Voici ma question : Je voudrai observer, à travers le module Flow Simulation, la réaction de l'air suite à un mouvement de translation dans une cavité.
Je m'explique. Une plaque rigide, montée sur un soufflet en caoutchou, et fixée sur une cavité et sera soumise à une fréquence (voir image en pièce jointe). Quand elle bougera, le flux d'air dans la cavité en sera modifié et j'aimerai observé ce résultat. C'est un peu le même principe qu'un haut parleur, quand sa membrane vibre il déplace de l'air.
Dans les paramètres de l'étude Flow Simulation, il est possible de renseigner la présence de gravité ou encore d'un mouvement de rotation (ventilateur) mais rien sur un mouvement de translation.
--> Comment simuler ce mouvement et observer le résultat ?
Une rotation de très grand rayon et de très faible amplitude pourrait être assimilée à une translation. Mais SW permet-il de générer un mouvement de rotation oscillatoire ?
J'ai trouvé la réponse par moi même, un site fait une référence de ce qui est possible ou non avec SolidWorks Flow Simulation :
''
What Flow Simulation can do
Incompressible (liquid or gas) or compressible (gas) viscous flow including subsonic, transonic and supersonic regimes
External and/or internal flows
Non-Newtonian Flows (Viscous fluids such as blood)
Automatic laminar/turbulent solution with transition
Wall roughness model
Swirling flows and fans (fan curves)
One component or up to ten independent species -liquid-liquid mixing, or gas-gas mixing
Forced, free or mixed convection – heat transfer
Conjugated heat transfer (fluid, solid), conduction and convection
Porous Media
Radiation
Steady state and Transient (time-dependent) fluid flow
Rotating Frames of Reference
TEC coolers/heat sink emulators/Thermostats
Cavitation
Relative Humidity
What Flow Simulation cannot do
Phase Change - The Flow package cannot handle materials cooling and transforming from gas-to-liquid, or molten liquid-to-solid. Similarly, it cannot handle materials heating from molten solid-to-liquid, or liquid-to-gas. This requires special high-end non-linear and complex formulations specifically for modeling entropy and chemical/molecular changes to account for cool down etc. Eg: plastic flow throw an injection mold as it cools and solidifies.
Co-existence of different phases – Flow Simulation cannot simulate a liquid and a gas in the same cavity. For instance, water flowing out of a nozzle into air (since water and air exist in the same cavity after the water flows out). Similarly, sprays (where fluid bubbles are sprayed into air). Different fluids (liquids/gases) can co-exist in a Flow Simulation if they exist in different cavities or volumes.
Free Surface Phenomena – Flow Simulation cannot simulate the top layer of a liquid sitting in an open tank. This again requires highly non-linear and complex formulae that are characteristic of high-end packages.
Moving bodies - Flow Simulation cannot simulate bodies moving and displacing fluids as they move. This requires special high-end focused packages that can handle Fluid-Structure-Interaction (FSI).
Combustion – Flow Simulation cannot perform chemical reactions to account for combustion.
Particles/Suspensions – Flow Simulation cannot simulate solid/liquid suspensions in a fluid where the suspensions can influence the pattern/parameters of flow. Since Flow Simulation cannot have two different phases in the same volume, it does not support solid particles in a fluid stream/liquid particles in a fluid stream/gas trapped in a liquid stream etc. ''